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Abstract
A systematic study is made of path integral representations for a particle
constrained to move on a manifold diffeomorphic to SD by applying the
irreducible representations of the Dirac algebra on it. Especially, we derive
two types of path integral representation for this system, one of which is
of a new form with a simple and compact expression, and the other is a
rigorous version of the Faddeev–Senjanovic formula. It is also shown that the
parameter α ∈ [0, 1) specifying the irreducible representation for D = 1 has
a close connection with the Aharonov–Bohm gauge potential produced by the
magnetic flux � = −2παh̄c/e .

PACS numbers: 03.65.Fd, 31.15.Kb

1. Introduction

We consider a quantum-mechanical system constrained to move on a D-dimensional manifold,
which is embedded in the flat space R

D+1. It will be denoted as f (x) = 0 with real f (x) and
is assumed to be diffeomorphic to SD , where x stands for the coordinates xα (α = 1, 2, . . . ,

D + 1) in R
D+1. We also assume the Hamiltonian of the system to be given by

Ĥ = 1
2 p̂2 + V (x̂) with p̂2 ≡ p̂αp̂α (1.1)

where and in what follows repeated Greek indices indicate the summation over 1, 2, . . . , D+1.
Then following Dirac [1] we may introduce the fundamental algebra for the operators x̂α and
p̂α to guarantee a consistent description of the constrained system. The algebra will be called
the Dirac algebra on f (x) = 0 and is shown to take the following form [2]:

f (x̂) = 0 (1.2)

{p̂α, f,α(x̂)} = 0 (1.3)

[x̂α, x̂β ] = 0 (1.4)
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[x̂α, p̂β] = ih̄�αβ(x̂) (1.5)

[p̂α, p̂β] = −ih̄

{
f,α(x̂)f,βγ (x̂) − f,β(x̂)f,αγ (x̂)

2R2(x̂)
, p̂γ

}
(α, β, γ = 1, 2, . . . ,D + 1)

(1.6)

where

f,α(x) = ∂αf (x) f,αβ(x) = ∂α∂βf (x) (1.7)

and R(x) and �αβ(x) are defined, respectively, by

R(x) = (f,α(x)f,α(x))1/2 �αβ(x) = δαβ − f,α(x)f,β(x)

R2(x)
. (1.8)

It is noted here that R(x) is non-vanishing in the neighbourhood of f (x) = 0 because of
diffeomorphism between f (x) = 0 and SD .

Recently all possible irreducible representations of the above algebra (1.2)–(1.6) have
been determined completely [2]. They are represented in terms of the canonical variables x̂α

and π̂α (α = 1, 2, . . . , D + 1) that satisfy

[x̂α, x̂β ] = [π̂α, π̂β] = 0 [x̂α, π̂β ] = ih̄δαβ. (1.9)

With the aid of these we will in the present paper explicitly construct path integral
representations for a system constrained on f (x) = 0. Thus, for the sake of later convenience,
we will first of all summarize the main results obtained in our previous work [2] (referred to
as I). Throughout the present paper the notation and definitions are the same as those in I.

The operators p̂β in the irreducible representation of the Dirac algebra are expressed as
follows:

D = 1.

p̂β = 1

2
{�βγ (x̂), π̂γ } − αh̄

�βγ (x̂)f,γρ(x̂)f,σ (x̂)ερσ

R2(x̂)
(1.10)

where α is a real parameter which uniquely specifies the irreducible representation, and ερσ

stands for the two-dimensional Levi-Civita symbol defined by ερσ = −εσρ and ε12 = 1. It
has also been shown that for D = 1 (i) no other irreducible representation exists than the
above and (ii) two irreducible representations specified by α and α′, respectively, are unitarily
equivalent if and only if α′ = α + integer. Hence without loss of generality we can restrict
ourselves to the cases for 0 � α < 1.

D � 2.

p̂β = 1
2 {�βγ (x̂), π̂γ } (1.11)

which is unique except for unitary-equivalent representations.
Given an irreducible representation we denote the representation space as H and state

vectors belonging to it as |ψ), |χ), . . .. Corresponding to them we write the wavefunctions
as ψ(x) ≡ (x|ψ), χ(x) ≡ (x|χ), . . . , where and in what follows x stands for a point on
f (x) = 0. We further introduce auxiliary wavefunctions ψ(x), χ(x), . . . belonging to L2 on
R

D+1. They are required to satisfy


ψ(x)|x=x = ψ(x)

χ(x)|x=x = χ(x)

...
...

. (1.12)
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Then the inner product and the matrix element of an operator O(x̂, p̂) on H can be written as

(ψ |χ) =
∫

dD+1xδ(f (x))ψ∗(x)χ(x) (1.13)

and

(ψ |O(x̂, p̂)|χ) =
∫

dD+1x dD+1x ′δ(f (x))ψ∗(x)〈x|O(x̂, p̂)|x ′〉χ(x ′)

=
∫

dD+1x dD+1x ′ψ∗(x)〈x|O(x̂, p̂)|x ′〉δ(f (x ′))χ(x ′) (1.14)

with the normalized f (x) such that

R(x) = (f,α (x)f,α (x))1/2 = 1. (1.15)

As emphasized in I, condition (1.15) is crucial in defining the inner product in the form of
(1.13). In (1.14) the ket |x〉 stands for the eigenstate of the position operators x̂α in R

D+1 that
satisfy (1.9), and hence

x̂α|x〉 = xα|x〉 〈x|x ′〉 = δD+1(x − x ′)
∫

dD+1x|x〉〈x| = 1̂ (1.16)

where 1̂ is the unit operator on the representation space H of canonical commutation relations
(1.9), and each of the spectra xα ranges from −∞ to ∞. It is noted that according to (1.10)
and (1.11) any operator O(x̂α, p̂α) on H is also an operator on H. Thus arguments about the
constrained system under consideration are reduced to those in the usual case described by
(1.9).

Consequently we can express the transition amplitude TFI from the initial state |ψI ) at
t = tI to the final state |ψF ) at t = tF as

TFI = (ψ
F
| exp

(
− i

h̄
Ĥ (tF − tI )

)
|ψ

I
)

=
∫

dD+1xF dD+1xI δ(f (xF ))ψ∗
F (xF )〈xF | exp

(
− i

h̄
Ĥ (tF − tI )

)
|xI 〉ψI (xI ) (1.17)

which enables us to obtain the amplitude TFI by calculating the propagation function
〈xF | exp

(− i
h̄
Ĥ (tF − tI )

)|xI 〉 on H. Needless to say ψI (xI ) and ψF (xF ) are auxiliary
wavefunctions corresponding to |ψ

I
) and |ψ

F
), respectively. In other words, since given an

irreducible representation of the Dirac algebra the Hamiltonian Ĥ is expressed as a function
of canonical variables x̂α and π̂α , applying the usual technique in path integration [3] we can
derive the path integral form of 〈xF | exp

(− i
h̄
Ĥ (tF − tI )

)|xI 〉 and hence of TFI .
It would be worthwhile to insert here a short remark. If we employ the function

fc(x) ≡ f (x) − c (c : real) (1.18)

in lieu of f (x) in the Dirac algebra, then for small |c| the primary constraint fc(x) = 0 in this
case provides us with a D-dimensional manifold in the neighbourhood of f (x) = 0. Since
there holds fc,β(x) = f,β(x) in this domain, the secondary constraint {p̂α, fc,α(x̂)} = 0 takes
the same form as (1.3) and commutators (1.4)–(1.6) remain unchanged under f (x) → fc(x).
Furthermore, the operators p̂β of (1.10) and (1.11) are seen to describe the irreducible
representations of the Dirac algebra on fc(x) = 0 together with x̂α that satisfy fc(x̂) = 0.
Thus most of results obtained on f (x) = 0 are just generalized to those on fc(x) = 0.

In the next section on the basis of (1.17) we try to derive a rigorous form of the path integral
for the constrained system under consideration. To this end for the sake of definiteness we
divide the time interval tF − tI into N segments, each of which is �t = (tF − tI )/N , and
take the limit N → ∞ after all calculations. Then we obtain a basic form of path integral
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representation for the system which includes quantum effects completely. Using this we derive
a Lagrangian path integral representation called type I. By means of it, in section 2, we also
discuss the physical meaning of the parameter α, which appears for D = 1, in a relation with
the Aharonov–Bohm gauge potential [4].

In section 3, based on the argument in section 2, we try to rewrite the Faddeev [5] and
Senjanovic [6] formulae applied to a system constrained on f (x) = 0 to obtain its rigorous and
well-defined form. Related to this some quantum effects are examined. The Lagrangian path
integral representation in this case, called type II, is also derived. It has a different appearance
from type I.

The final section will be devoted to some additional remarks.

2. Path integral representations

To begin with let us rewrite Hamiltonian (1.1) in terms of the canonical variables x̂β and π̂β

by applying (1.10) and (1.11). Then after some calculations we find

Ĥ = 1

2
π̂β�βγ (x̂)π̂γ + K(x̂) + V (x̂) +

αh̄

2
εβτ

{
f,β(x̂)f,τσ (x̂)�σρ(x̂)

R2(x̂)
, π̂ρ

}

+
α2h̄2

2

�βγ (x̂)f,γ σ (x̂)�στ (x̂)f,τβ(x̂)

R2(x̂)
(D = 1) (2.1)

and

Ĥ = 1
2 π̂β�βγ (x̂)π̂γ + K(x̂) + V (x̂) (D � 2) (2.2)

where

K(x̂) = −h̄2

8

{
∂β∂σ�βσ (x̂) − �αβ(x̂)f,αρ(x̂)f,βρ(x̂)

R2(x̂)

}
. (2.3)

On the basis of (2.1) and (2.2) we will formulate path integral representations for the system
under consideration. To this end we evaluate the term 〈x(k)|Ĥ |x(k−1)〉 (k = 1, 2, . . . , N). As
shown in appendix A we then obtain the following:

〈x(k)|Ĥ |x(k−1)〉 =
∫

dD+1p(k)

(2πh̄)D+1
exp
[ i

h̄
p(k)�x(k)

]
H(p(k)⊥, x̄(k)) (2.4)

with

H(p(k)⊥, x̄(k)) = 1

2
(p(k)⊥)2 + Veff(x̄

(k)) + αh̄
εβτf,β(x̄(k))f,τσ (x̄(k))p(k)⊥

σ

R2(x̄(k))

+ α2h̄2 �βγ (x̄(k))f,γ σ (x̄(k))�στ (x̄
(k))f,τβ(x̄(k))

2R2(x̄(k))
(D = 1) (2.5)

and

H(p(k)⊥, x̄(k)) = 1
2 (p(k)⊥)2 + Veff(x̄

(k)) (D � 2) (2.6)

where

p
(k)⊥
β = �βγ (x̄(k))p(k)

γ x̄
(k)
β = x

(k)
β + x

(k−1)
β

2
�x

(k)
β = x

(k)
β − x

(k−1)
β

and

Veff(x̄
(k)) = h̄2 �αβ(x̄(k))f,αρ (x̄(k))f,βρ (x̄(k))

8R2(x̄(k))
+ V (x̄(k)). (2.7)
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Thus with the aid of the well-known technique in path integral, we are led to

〈xF | exp
(
− i

h̄
(tF − tI )Ĥ

)
|xI 〉 = lim

N→∞

∫ N−1∏
k=1

dD+1x(k)

×
∫ N∏

k=1

dD+1p(k)

(2πh̄)(D+1)
exp

[
i

h̄

N∑
k=1

{p(k) · �x(k) − H(p(k)⊥, x̄(k))�t}
]

(2.8)

where

t (N) ≡ tF t (0) ≡ tI �t ≡ tF − tI

N
. (2.9)

Then applying (2.8) to the right-hand side of (1.17), we arrive at

TFI = lim
N→∞

∫ N∏
k=0

dD+1x(k) · δ(f (x(N)))

∫ N∏
k=1

dD+1p(k)

(2πh̄)(D+1)

× exp

[
i

h̄

N∑
k=1

{p(k) · �x(k) − H(p(k)⊥, x̄(k))�t}
]

ψ∗
F (x(N))ψI (x

(0)) (2.10)

which provides us with a rigorous and basic expression of the path integral for a system
constrained on f (x) = 0. The emergence of the argument p(k)⊥ in the Hamiltonian of (2.10)
seems quite reasonable, since in the continuous limit it describes a projection of the momentum
p onto the space tangential to the manifold at x̄(k). Though the expression of (2.10) is simple
and compact, it apparently differs from the Faddeev–Senjanovic (FS) [5, 6] formula derived
by a semi-classical approach. The relation of (2.10) with the FS formula will be discussed in
the next section.

We are now ready to perform the p-integration in (2.10) using (2.5) for D = 1 and (2.6)
for D � 2. For later convenience we start by evaluating the integral such that

I (x, x ′) =
∫

dD+1p exp
[ i

h̄
{p · �x − H(p⊥, x̄)�t}

]
(2.11)

where

�xα = xα − xα′ x̄α = 1
2 (xα + xα′) pα⊥ = �αβ(x̄)pβ.

Since the contribution of (x̄) to the path integral is considered to come from the neighbourhood
of the manifold, we may regard the vector f,·(x̄) ≡ (f,1(x̄), f,2(x̄), . . . , f,D+1(x̄)) as non-
vanishing. Then we introduce an orthogonal transformation represented by the matrix
‖aβγ (x̄)‖ ∈ SO(D + 1), which rotates the vector f, .(x̄) to the direction of the (D + 1)-
th axis, i.e.,

aβγ (x̄)f,γ (x̄) = δβD+1R(x̄). (2.12)

Applying it we define the quantities such that

Xβ = aβγ (x̄)xγ X′
β = aβγ (x̄)x ′

γ Pβ = aβγ (x̄)pγ P ⊥
β = aβγ (x̄)p⊥

γ . (2.13)

We will use a boldfaced letter for a D-dimensional vector obtained by dropping out the
(D + 1)-th component from a vector in R

D+1, and hence, for example, we will denote it
as X ≡ (X1, X2, . . . , XD) for X = (X1, X2, . . . , XD+1). Then there holds P ⊥ = (P , 0).
Denoting the Hamiltonian H(p⊥, x̄) as H(P , x̄), we rewrite I (x, x ′) as

I (x, x ′) =
∫

dDP dPD+1 exp
[ i

h̄
{P · �X − H(P , x̄)�t}

]
= 2πh̄δ(�XD+1)Ĩ (x, x ′) (2.14)
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with

Ĩ (x, x ′) =
∫

dDP exp
[ i

h̄
{P · �X − H(P , x̄)�t}

]
(2.15)

where

�Xβ = Xβ − X′
β = aβγ (x̄)�xγ . (2.16)

By definition the Hamiltonian H(P , x̄) takes the following form:

H(P , x̄) = 1

2
P 2 + Veff(x̄) + αh̄

εστf,σ (x̄)f,τβ(x̄)a1β(x̄)P

R2(x̄)

+ α2h̄2 �βγ (x̄)f,γ σ (x̄)�στ (x̄)f,τβ(x̄)

2R2(x̄)
(D = 1) (2.17)

and

H(P , x̄) = 1
2P 2 + Veff(x̄) (D � 2). (2.18)

It is noted that P in (2.17) is a single component vector in one dimension.
Thus by applying the Fresnel formula∫

dDP exp
[
− i

2h̄
P 2�t

]
=
(

2πh̄

i�t

)D/2

we can perform the P -integration in (2.15) for Hamiltonians (2.17) and (2.18). Then we find
that Ĩ (x, x ′) can effectively be written as

Ĩ (x, x ′) =
(

2πh̄

i�t

)1/2

exp

[
i

h̄

{
1

2

(
�xβ

�t

)2

+ Aβ(x̄)
�xβ

�t
− Veff(x̄)

}
�t

]
(D = 1)

(2.19)

with

Aβ(x) ≡ −αh̄
εστf,σ (x)f,τβ (x)

R2(x)
(2.20)

and

Ĩ (x, x ′) =
(

2πh̄

i�t

)D/2

exp

[
i

h̄

{
1

2

(
�xβ

�t

)2

− Veff(x̄)

}
�t

]
(D � 2). (2.21)

The derivation of (2.19) is somewhat technical. It is given in appendix B.
Since transition amplitude (2.10) is written as

TFI = lim
N→∞

∫ N∏
k=0

dD+1x(k) · δ(f (x(N)))

N∏
k=1

(
I (x(k), x(k−1))

(2πh̄)D+1

)
ψ∗

F (x(N))ψI (x
(0))

= lim
N→∞

∫ N∏
k=0

dD+1x(k) · δ(f (x(N)))

N∏
k=1

(
δ
(
�X

(k)
D+1

)
Ĩ (x(k), x(k−1))

(2πh̄)D

)
ψ∗

F (x(N))ψI (x
(0))

(2.22)

with the help of the relation

�X
(k)
D+1 = �x

(k)
β f,β (x̄(k))/R(x̄(k)) (2.23)
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we obtain

TFI = lim
N→∞

1

(2π ih̄�t)DN/2

N∏
k=0

∫
dD+1x(k) · δ(f (x(N)))

N∏
k=1

δ
(
�x

(k)
β f,β (x̄(k))

/
R(x̄(k))

)

× exp

[
i�t

h̄

N∑
k=1

L
(k)
eff

]
ψ∗

F (x(N))ψI (x
(0)) (2.24)

where the effective Lagrangian L
(k)
eff is given by

L
(k)
eff = 1

2

(
�x

(k)
β

�t

)2

+ Aβ(x̄(k))
�x

(k)
β

�t
− Veff(x̄

(k)) (D = 1) (2.25)

and

L
(k)
eff = 1

2

(
�x

(k)
β

�t

)2

− Veff(x̄
(k)) (D � 2). (2.26)

Needless to say, in (2.24) we can substitute δ(f (x(0))) for δ(f (x(N))) by using (1.14). It
is to be remarked that in (2.24) the factor δ

(
�x

(k)
β f,β (x̄(k))

/
R(x̄(k))

)
, which corresponds to

secondary constraint (1.3), emerges for each k, while the factor corresponding to primary
constraint (1.2) appears once in the form of δ(f (x(N))) or δ(f (x(0))). We call (2.24) the path
integral representation of type I.

In the continuous limit Lagrangian (2.26) for D � 2 becomes of the standard form with
the effective potential Veff , in which a quantum effect proportional to h̄2 has been brought
through the process of ordering the canonical variables x̂α and π̂α in the kinetic energy part
of the Hamiltonian.

In contrast to the case of D � 2, the Lagrangian for D = 1 has a kind of gauge
interaction, which is reduced to the form Aβ(x)ẋβ in the continuous limit. The situation is
very characteristic of D = 1. Hence in the following we will examine properties of (2.20),
which hereafter will be denoted in units of e/c = 1. Since the components of the gauge
potential are of the form


A1(x) = αh̄

f,2(x)f,11(x) − f,1(x)f,12(x)

R2(x)

A2(x) = αh̄
f,2(x)f,12(x) − f,1(x)f,22(x)

R2(x)

(2.27)

they are seen to satisfy

∂A1(x)

∂x2
− ∂A2(x)

∂x1
= 0 (R(x) �= 0), (2.28)

that is, no magnetic flux exists in the neighbourhood of the closed loop f (x) = 0 on R
2. Now

let us introduce the quantity

ζ(x) ≡ tan−1

(
f,2(x)

f,1(x)

)
. (2.29)

For x on f (x) = 0 it stands for the angle between the x1-axis and the normal to the closed
loop at x (see figure 1).

As easily seen gauge potential (2.27) is written as

Aβ(x) = −αh̄
∂ζ(x)

∂xβ

(R(x) �= 0) (2.30)
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x1

x2

�
�

�
�

�
�

��

�����

�

�

f,· (x)

q

x
D

θ(x)

ζ(x)

f(x) = 0
�

�
�

Figure 1. The domain D is surrounded by the closed loop f (x) = 0. The vector f,·(x) =
(f,1(x), f,2(x)) is a normal to the closed loop at x.

and hence the contour integral
∮
Aβ(x) dxβ evaluated along the closed loop takes the value

−2παh̄, i.e. the gauge potential is non-trivial for α �= 0.
Now let us take a point q = (q1, q2) inside the domain D which is surrounded by the

closed loop f (x) = 0 on R
2. Using it we further introduce the potential such that

Aβ(x) = − 1

2π
εβτ

xτ − qτ

(xσ − qσ )2
= 1

2π

∂θ(x)

∂xβ

(2.31)

with

θ(x) = tan−1

(
x2 − q2

x1 − q1

)
(x �= q). (2.32)

The potential Aβ(x) is nothing but the Aharonov–Bohm gauge potential [4] produced by the
unit magnetic flux confined in an extremely thin solenoid perpendicular to R

2 at q. As the
point x circles once along the closed loop, the angles ζ(x) and θ(x) are transformed as

ζ(x) → ζ(x) + 2π θ(x) → θ(x) + 2π. (2.33)

Consequently the function

U(x) = exp
[ i

h̄
F (x)

]
(2.34)

defined with

F(x) = −αh̄(ζ(x) − θ(x)) (2.35)

is a single-valued function in the neighbourhood of the closed loop. Then it enables us to
make a gauge transformation such that

Aβ(x) → Aβ(x) − h̄

i
U ∗(x)

∂U(x)

∂xβ

= −2παh̄Aβ(x). (2.36)

As mentioned in section 1 the arguments on the closed loop f (x) = 0 can be generalized
to those on fc(x) = 0. Thus it is concluded that the potential Aβ(x) is definable in the
neighbourhood of f (x) = 0 and is gauge equivalent to the Aharonov–Bohm potential produced
by the magnetic flux � = −2παh̄ that perpendicularly crosses the domain D at q.

It is also shown that the parameter α is essentially the same as that introduced by
Schulman [7] in his path integral formalism, which was derived without recourse to the
operator formalism. The emergence of α originates in the multiply connected structure [8] of
the closed loop.
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3. Relation with the Faddeev–Senjanovic formula

The FS path integral formula [5, 6] for a system constrained on the D-dimensional manifold
f (x) = 0 is written as

TFI =
∫

Dµψ∗
F (xF ) exp

[
i

h̄

∫ TF

TI

dt (pẋ − H(p, x))

]
ψI (xI ) (3.1)

with H = 1
2p2 + V (x), where the integral measure Dµ is given by

Dµ = δ(f (x))δ(pαf,α(x))R2(x)DpDx. (3.2)

Amplitude (3.1) was derived by applying a semi-classical argument based on the Dirac
formalism [1] for the constrained system, since at that time nothing was known on the
irreducible representation of the Dirac algebra. Accordingly there may arise questions, say,
about quantum effects which could emerge in the path integral representation and also about
a concrete definition of measure (3.2). In this connection Kashiwa and Fukutaka [9, 10]
carefully examined formula (3.1) to determine a correct form of the path integral without use
of irreducible representations.

In the following, starting from (2.10) we will derive a rigorous expression for the path
integral that corresponds to (3.1). For this purpose, without performing the p-integration we
rewrite Ĩ (x, x ′) of (2.15) in the following manner:

Ĩ (x, x ′) =
∫

dDP exp
[ i

h̄
{P · �X − H(P , x̄)�t}

]
=
∫

dD+1Pδ(PD+1R(x̄))R(x̄) exp
[ i

h̄
{P · �X − H(P, x̄)�t}

]
= R(x̄)

∫
dD+1pδ(pβf,β(x̄)) exp

[ i

h̄
{p · �x − H(p, x̄)�t}

]
(3.3)

where H(P , x̄) = H(p⊥, x̄) and H(p, x̄) is given by simply replacing p⊥
β with pβ in

H(p⊥, x̄). The factor δ(pβf,β(x̄)) in the integrand just corresponds to the secondary constraint
{p̂β, f,β (x̂)} = 0.

To define the path integral measure corresponding to (3.2) we further rewrite the factor
δ(�XD+1) in (2.14). To this end we proceed in the following way:

f (x) − f (x ′) = f

(
x̄ +

�x

2

)
− f

(
x̄ − �x

2

)

=
∞∑

n=0

�xβ1�xβ2 · · · �xβ2n+1

22n · (2n + 1)!
f,β1β2···β2n+1(x̄)

=
∞∑

n=0

�Xβ1�Xβ2 · · ·�Xβ2n+1

22n · (2n + 1)!
Fβ1β2···β2n+1(x̄)

= �XD+1R(x̄) +
∞∑

n=1

�Xβ1�Xβ2 · · · �Xβ2n+1

22n · (2n + 1)!
Fβ1β2···β2n+1(x̄) (3.4)

where

Fβ1β2···β2n+1(x̄) = aβ1γ1(x̄)aβ2γ2(x̄) · · · aβ2n+1γ2n+1(x̄)f,γ1γ2···γ2n+1(x̄).

We divide the right-hand side of (3.4) into two parts; one consists of terms with the factor
�XD+1 and the other is the remainder. Since |�Xj | ∼ √

h̄�t in the path integral for the
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Hamiltonian Ĥ = 1
2 p̂2 + V (x̂), the latter is a quantity of the order of magnitude |�t |3/2 for

small �t . Thus we can write (3.4) as

f (x) − f (x ′) = �XD+1{R(x̄) + A(x, x ′)} + O(|�t |3/2) (3.5)

where A(x, x ′) takes the form such that

A(x, x ′) = 1

8

D∑
j,l=1

�Xj�X lFD+1j l(x̄) +
1

8
�XD+1

D∑
j=1

�XjFD+1D+1j (x̄)

+
1

24
(�XD+1)

2FD+1D+1D+1(x̄) + higher terms in �XD+1 + O(|�t |2). (3.6)

We may consistently assume that R(x̄)+A(x, x ′) is non-vanishing for small �t when regarded
as a function of �XD+1. Then we are led to

δ(f (x) − f (x ′)) = δ(�XD+1){R(x̄) + A(x, x ′)}−1 + O(|�t |3/2)

= δ(�XD+1)

{
R(x̄) +

Q(x, x ′)
R(x̄)

}−1

+ O(|�t |3/2) (3.7)

where

Q(x, x ′) = R(x̄)

8

D∑
j,l=1

�Xj�X lFD+1j l(x̄)

= 1

8
�xβ�xγ �βρ(x̄)�γσ (x̄)f,ρστ (x̄)f,τ (x̄). (3.8)

Hence we have

δ(�XD+1) = δ(f (x) − f (x ′))
{
R(x̄) +

Q(x, x ′)
R(x̄)

}
+ O(|�t |3/2) (3.9)

and obtain

δ(f (x))δ(�XD+1) = δ(f (x))

{
R(x̄) +

Q(x, x ′)
R(x̄)

}
δ(f (x ′)) + O(|�t |3/2) (3.10)

which leads us to

δ
(
f (x(N))

) N∏
k=1

δ
(
�X

(k)
D+1

)

=
N∏

k=1

δ(f (x(k))

{
R(x̄(k)) +

Q(x(k), x(k−1))

R(x̄)

}
δ(f (x(k−1)) + O(|�t |1/2). (3.11)

Inserting this equation into (2.22) we find

TFI = lim
N→∞

∫ N∏
k=0

dD+1x(k)δ(f (x(k)))

N∏
k=1

{
R(x̄(k)) +

Q(x(k), x(k−1))

R(x̄)

}
Ĩ (x(k), x(k−1))

(2πh̄)D

×ψ∗
F (x(N))ψI (x

())). (3.12)

Consequently applying (3.3) we arrive at

TFI = lim
N→∞

∫ N∏
k=0

dD+1x(k)δ
(
f (x(k))

)

×
∫ N∏

k=1

dD+1p(k)

(2πh̄)D
δ
(
p

(k)
β f,β(x̄(k))

){R2(x̄(k)) + Q(x(k), x(k−1))}

× exp

[
i

h̄

N∑
k=1

{p(k) ·�x(k) − H(p(k), x̄(k))�t}
]

ψ∗
F (x(N))ψI (x

(0)) (3.13)
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which provides us with a rigorous version of path integral representation (3.1). In the
above calculation the term O(|�t |1/2) in (3.11) has been discarded because of its vanishing
contribution in the limit �t → 0. On the other hand, since Q(x(k), x(k−1)) is of the order
O(h̄�t), we expect that it will bring about a finite quantum effect unless Q ≡ 0. In this
connection it is noted that there is no classical counterpart corresponding to the quantity Q.
Furthermore, on account of x̄(k) = x(k) − �x(k)/2 = x(k−1) + �x(k)/2, we can write R(x̄(k))

as

R(x̄(k)) = 1
2 {R(x(k)) + R(x(k−1))} + 1

16�xα�xβ∂α∂β{R(x(k)) + R(x(k−1))} + higher terms.

(3.14)

Hence for x(k) and x(k−1) on the normalized manifold it takes the form of {1 +O(h̄�t)}, which
will produce a quantum effect in the second line of (3.13). Accordingly, in the Hamiltonian
of (3.13) and in L

(k)
eff of (3.15) below we can use R(x̄(k)) = 1 by neglecting O(h̄�t), because

in the path integral the quantities H and L
(k)
eff always appear in a form multiplied with �t .

Now let us perform the p-integration in (3.13). The result is obtained by inserting
Ĩ (x(k), x(k−1)) of (2.19) or (2.21) into the right-hand side of (3.12). Then we have

TFI = lim
N→∞

1

(2π i�t)DN/2

∫ N∏
k=0

dD+1x(k)δ(f (x(k)))

N∏
k=1

{
R(x̄(k)) +

Q(x(k), x(k−1))

R(x̄(k))

}

× exp

[
i

h̄
�t

N∑
k=1

L
(k)
eff

]
ψ∗

F (x(N))ψI (x
(0)) (3.15)

where L
(k)
eff is given by (2.25) for D = 1 and by (2.26) for D � 2.

We will call (3.15) the path integral representation of type II, which is the Lagrangian
version of the FS-type path integral. Unlike the case of type I there appears the primary
constraint condition δ(f (x(k))) corresponding to each k.

4. Concluding remarks

We have formulated rigorous expressions for the path integral, which describes the transition
amplitude for the system constrained on f (x) = 0. The basic equation for this is (2.10), in
which the constraint function f (x) is required to satisfy (1.15) and wavefunctions defined on
H are assumed to obey (1.12). Then the two types of path integral representations called types
I and II have been formulated in sections 2 and 3, respectively. Though the appearances are
quite different they provide us with equivalent descriptions of the same system, since as easily
seen each of them have been obtained by rewriting equation (2.10) in an equivalent manner.

In closing this paper we add a few remarks.
The simplest example of our argument is the system on SD (radius a), where the

normalized f (x) is given by

f (x) = (x2 − r2)

2a
(x2 ≡ xαxα) (4.1)

and hence

�βγ (x) = δβγ − xβxγ

x2
Q(x) = 0. (4.2)
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The Hamiltonian H(p, x) in the right-hand side of (3.3) is found to take the form

H(p, x) =




1

2

{(
p1 − αh̄

x2

x2

)2
+
(
p2 + αh̄

x1

x2

)2
}

+ Veff(x) (D = 1)

1

2
p2 + Veff(x) (D � 2)

(4.3)

with

Veff(x) = h̄2 D

8x2
+ V (x). (4.4)

As will be expected from the argument in section 2, the first line in the above is just the
Aharonov–Bohm Hamiltonian with effective potential Veff(x). In the path integral the term
x2 in the Hamiltonian can be replaced with a2 by virtue of R(x̄(k)) = 1. A detailed study
of (3.13) with the Hamiltonian 1

2p2 + V (x) on SD (D � 1) has been made by Fukutaka and
Kashiwa [9] in their analysis of the FS formula.

As pointed out in I, our formalism can easily be generalized to the case where the manifold
f (x) = 0 is diffeomorphic to R

D . The Dirac algebra in this case takes the same form as
(1.2)–(1.6). Thus the operators p̂β of (1.10) for D = 1 and of (1.11) for D � 2 satisfy this
algebra. It is noted, however, that the operators p̂β specified with α �= 0 in (1.10) are unitarily
equivalent to those with α = 0 because of the simply connected structure of the manifold, that
is the gauge potentials in (2.27) are eliminated by applying a suitable gauge transformation.
Thus, irrespective of the value of D we may write p̂β as

p̂β = 1
2 {�βγ (x̂), π̂γ } (4.5)

in any irreducible representation. Accordingly the path integral representations, say (2.24)
and (3.15), are given with L

(k)
eff of (2.26) for any D.

Finally we remark that we are unable to represent the trace of e−βĤ in the form of a path
integral in the manner stated in the present paper. The reason is as follows.

Since the trace is to be taken on the physical Hilbert space H, it should be written as

Tr e−βĤ =
∑

n=1,2,3,...

(ψ
n
| e−βĤ |ψ

n
) (4.6)

with the aid of the complete set of ortho-normalized vectors |ψ
n
) (n = 1, 2, 3, . . .) on H.

Then owing to (1.14) we are led to

Tr e−βĤ =
∑

n=1,2,3,...

∫
dD+1x dD+1x ′δ(f (x))〈x|Tr e−βĤ |x ′〉ψ∗

n (x)ψn(x
′) (4.7)

in which, according to (1.12), square integrable functions ψn(x) ∈ H are related to ψ
n
(x) by

ψn(x)|x=x = ψ
n
(x) (n = 1, 2, 3, . . .). (4.8)

Therefore, if ψn(x) were made to satisfy the ortho-completeness condition{∫
dxD+1ψ∗

n (x)ψn′(x) = δnn′∑
n=1,2,...ψn(x)ψ∗

n (x ′) = δD+1(x − x ′)
(4.9)

on H, the right-hand side of (4.8) would be written as
∫

dD+1xδ(f (x))〈x|Tr e−βĤ |x〉, which
could provide us with a path integral representation for the trace. However, the situation is not
so simple. For instance, let us consider a particle constrained to move on S2 (radius a) under
the central potential Veff(r), where r = (

x2
1 + x2

2 + x2
3

)1/2
. Then ψ

n
(x) is represented by the

spherical harmonics Ym
l (θ, ϕ) with n = (l,m) and x = (θ, ϕ). Hence for reasons of symmetry

the auxiliary wavefunction ψn(x) should be written as Ym
l (θ, ϕ)Flm(r) with Flm(a) = 1. It is
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noted here that in this expression for ψn(x) no quantum number exists corresponding to the
radial degree of freedom, and accordingly the functions Ym

l (θ, ϕ)Flm(r) as a whole cannot
span an ortho-complete system on H. This clearly contradicts condition (4.9) which could
provide a path integral representation for the trace. Accordingly a study of an alternative
approach to attack this problem would be highly desirable.

Appendix A

Let us start by evaluating the quantity 〈x|π̂α�αβ(x̂)π̂β |x ′〉 using

〈x|π̂α|x ′〉 = h̄

i

∂

∂xα

δD+1(x − x ′). (A.1)

Then we have

〈x|π̂α�αβ(x̂)π̂β |x ′〉 =
∫

dD+1y dD+1y ′〈x|π̂α|y〉〈y|�αβ(x̂)|y ′〉〈y ′|π̂β |x ′〉

= h̄2 ∂2

∂xα∂x ′
β

∫
dD+1y dD+1y ′δD+1(x − y)δD+1(y ′ − x ′)δD+1(y − y ′)

×�αβ

(
y + y ′

2

)

= h̄2 ∂2

∂xα∂x ′
β

(
δD+1(x − x ′)�αβ

(
x + x ′

2

))

= h̄2

(
−∂α∂βδD+1(x − x ′) · �αβ(x̄) +

1

4
δD+1(x − x ′)∂α∂β�αβ(x̄)

)

+
h̄2

2
δD+1(x − x ′)

(
∂

←
∂xα

∂
→
∂xβ

− ∂
←
∂xβ

∂
→
∂xα

)
�αβ(x̄) (A.2)

where x̄ = 1
2 (x + x ′). Since the second term in the right-hand side vanishes due to

�αβ(x̄) = �βα(x̄), we are led to

1

2
〈x(k)|π̂α�αβ(x̂)π̂β |x(k−1)〉

=
∫

dD+1p(k)

(2πh̄)D+1
exp
( i

h̄
p(k) · �x(k)

){1

2
(p(k)⊥)2 +

h̄2

8
∂α∂β�αβ(x̄(k))

}
(A.3)

where use has been made of �αβ(x̄(k)) = �αγ (x̄(k))�γβ(x̄(k)). Furthermore, since

〈x(k)|G(x̂)|x(k−1)〉 = 1

(2πh̄)D+1

∫
dD+1p(k) exp

( i

h̄
p(k) · �x(k)

)
G(x̄) (A.4)

for any G(x̂), we obtain from (2.2), (2.3) and (2.7)

〈x(k)| ( 1
2 π̂α�αβ(x̂)π̂β + K(x̂) + V (x̂)

) |x(k−1)〉

=
∫

dD+1p(k)

(2πh̄)D+1
exp
( i

h̄
p(k) · �x(k)

)

×
{

1

2
(p(k)⊥)2 +

h̄2

8
∂α∂β�αβ(x̄(k)) + K(x̄(k)) + V (x̄(k))

}

=
∫

dD+1p(k)

(2πh̄)D+1
exp
( i

h̄
p(k) · �x(k)

){1

2
(p(k)⊥)2 + Veff(x̄

(k))

}
. (A.5)

Thus for D � 2 we are led to (2.4) with the Hamiltonian of (2.6).
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Next let us consider the case of D = 1, where as seen from (2.1) Ĥ contains an additional
term of the form {Gρ(x̂), π̂ρ}. In a similar manner to the above we can easily evaluate
〈x|{Gρ(x̂), πρ}|x ′〉 to obtain

〈x|{Gρ(x̂), πρ}|x ′〉 =
∫

dD+1y(〈x|Gρ(x̂)|y〉〈y|π̂ρ |x ′〉 + 〈x|πρ |y〉〈y|Ĝρ(x̂)|x ′〉)

= ih̄
∫

dD+1y

(
Gρ

(x + y

2

)
δD+1(x − y)

∂

∂x ′
ρ

δD+1(y − x ′)

−Gρ

(
y + x ′

2

)
δD+1(y − x ′)

∂

∂xρ

δD+1(x − y)

)

= ih̄

(
∂

∂x ′
ρ

− ∂

∂xρ

)
Gρ(x̄)δD+1(x − x ′)

= −2ih̄Gρ(x̄)∂ρδ
D+1(x − x ′)

= 2

(2πh̄)D+1

∫
dD+1p exp

( i

h̄
p · (x − x ′)

)
Gρ(x̄)pρ. (A.6)

Hence

αh̄

2
εβτ 〈x(k)|

{
f,β(x̂)f,τσ (x̂)�σρ(x̂)

R2(x̂)
, π̂ρ

}
|x(k−1)〉

= αh̄εβτ

(2πh̄)D+1

∫
dD+1p(k) exp

( i

h̄
p(k) · �(k)

)f,β(x̄(k))f,τσ (x̄(k))p(k)⊥
σ

R2(x̄(k))
(A.7)

which gives (2.5) if use is made of (A.4) and (A.6). Thus we have derived (2.5) and (2.6).
The result obtained here just corresponds to the Weyl ordering for the operator product. In

this connection it is to be noted that in the above calculation we can replace x̄ in the functions
δD+1(x − x ′)�αβ(x̄), δD+1(x − x ′)Gρ(x̄) and δD+1(x − x ′)G(x̄) by x̄η ≡ ηx + (1 − η)x ′ with
real η. Then we will have different expressions for (A.3) and (A.5), e.g., such that

〈x|π̂α�αβ(x̂)π̂β |x ′〉 = 1

(2πh̄)D+1

∫
dD+1p exp

( i

h̄
p · (x − x ′)

)
× (p⊥2 + h̄2η(1 − η)∂α∂β�αβ(x̄η) + ih̄(2η − 1)pα∂β�αβ(x̄η)). (A.8)

Obviously η = 1/2 provides the simplest expression. For this reason we have employed it in
the present paper. The privileged role of η = 1/2 was emphasized by Fukutaka and Kashiwa
[9] in their analysis of the FS formula.

Appendix B

To begin with we note the following identity:

Aβ(x̄)�βγ (x̄)Aγ (x̄) = α2h̄2 �βγ (x̄)f,γ σ (x̄)�στ (x̄)f,τβ(x̄)

R2(x̄)
(B.1)

where Aβ(x̄) is defined by (2.20) and the right-hand side in the above is just twice the fourth
term in the right-hand side of (2.17). A proof of (B.1) is as follows:

Aβ�βγ Aγ = α2h̄2 εστf,σ f,τβ

R2
�βγ

εκρf,κf,ργ

R2

= α2h̄2(δστ δτρ − δσρδτκ)�βγ

f,σ f,τβf,κf,ργ

R4
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= α2h̄2

(
�βγ

f,γ τ f,τβ

R2
− �βγ

f,σ f,τ f,γ σ f,τβ

R4

)

= α2h̄2

(
�βγ

f,γ τ f,τβ

R2
+ �βγ (�στ − δστ )

f,γ σ f,τβ

R2

)

= α2h̄2 �βγ f,γ σ �στf,τβ

R2
(B.2)

where we have omitted writing the argument x̄ for simplicity.
Accordingly, we can now write H(P , x̄) in (2.17) as

H(P , x̄) = 1
2 {P 2 − 2Aβ(x̄)a1β(x̄)P + Aβ(x̄)�βγ (x̄)Aγ (x̄)} + Veff(x̄) (B.3)

which leads us to

P�X − H(P , x̄)�t = −1

2

(
P − Aβ(x̄)a1β(x̄) − �X

�t

)2

�t

+

{
1

2

(
�X

�t

)2

+ Aβ(x̄)a1β(x̄)
�X

�t
− Veff(x̄)

}
�t (B.4)

where we have used the relation a1β(x̄)a1γ (x̄) = �βγ (x̄), which comes from

‖aβγ (x̄)‖ =




f,2(x̄)

R(x̄)
−f,1(x̄)

R(x̄)

f,1(x̄)

R(x̄)

f,2(x̄)

R(x̄)


 . (B.5)

Since �X = �X1, we find

(�X)2 = �Xβ�Xβ |�X2=0 = �xβ�xβ |�X2=0 (B.6)

and

a1β(x̄)�X = aσβ(x̄)�Xσ |�X2=0 = �xβ |�X2=0. (B.7)

Using (B.4) together with (B.5) and (B.6) in (2.15) we then obtain for D = 1

Ĩ (x, x ′) =
∫

dP exp
[
− i

2h̄
P 2�t

]
exp

[
i

h̄

{
1

2

(
�xβ

�t

)2

+ Aβ(x̄)
�xβ

�t
− Veff(x̄)

}
�t

]∣∣∣∣∣
�X2=0

=
(

2πh̄

i�t

)1/2

exp

[
i

h̄

{
1

2

(
�xβ

�t

)2

+ Aβ(x̄)
�xβ

�t
− Veff(x̄)

}
�t

]∣∣∣∣∣
�X2=0

. (B.8)

Since as seen from (2.14) the term Ĩ (x, x ′) always appears in the form multiplied by δ(�XD+1)

we can effectively remove the condition �X2 = 0 from (B.8), thereby obtaining (2.19).
In a similar manner we can derive (2.21) for D � 2.
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